跳至主要内容

5G覆盖提升利器——上下行解耦

 5G的覆盖问题一直是难题,如何解决呢?

5G覆盖存在的问题

随着信息技术的发展,用户对于数据量的需求呈现爆发式的增长,这就导致了移动通信所使用的频段越来越高。

C-Band拥有大带宽,是构建5G eMBB的黄金频段。目前,全球多数运营商已经将C-Band作为5G首选频段。但是,由于NR在C-Band上均使用TDD,gNodeB下行功率(200w)远大于手机功率(0.2w),导致C-Band上下行覆盖不平衡,上行覆盖受限成为5G部署覆盖范围的瓶颈。

同时,随着大规模天线波束赋形、CRS-Free等技术的引入,下行干扰会减小,进一步提升了下行覆盖的范围,C-Band上下行覆盖差距将进一步加大。


目前业界主要的解决方案有两种,一种是采用TDD +FDD的上行载波聚合技术(CA),一种是将FDD低频的上行频段做补充的上下行解耦技术(又叫超级上行)

上行CA:在3.5G基础上增开低频通道做上行,让流量同时承载于高频段+低频段,提升覆盖和体验。但CA技术存在两大问题:一是两个频段上行只能各占一个通道,导致3.5G频段无法充分发挥双通道大带宽优势,同时每个通道功率小于20dbm,导致上行收缩3dB,二是终端产业发展缓慢,目前无TDD+FDD上行载波聚合的终端并无任何实现路标。

上下行解耦:重新定义了新的频谱配对方式,使下行数据在C-Band传输,而上行数据在Sub-3G(例如1.8GHz)传输,利用低频衰减慢覆盖好从而提升了上行覆盖。在5G早期商用场景下,如果没有单独的Sub-3G频谱资源供5G使用,可以通过开通LTE FDD和NR上行频谱共享特性来获取Sub-3G频谱资源。

上下行解耦技术原理

3GPP Release 15版本引入了辅助上行SUL(Supplementary Uplink),SUL承载在Sub-3G频段。SUL可以有效利用空闲的Sub-3G频段资源,改善高频的上行覆盖,使得更多的区域可以享受到5G;同时提高边缘用户的使用体验。


SUL链路管理:

建立双连接后,由于NR上行与NR辅助上行的覆盖差异,UE在NR小区内移动时会产生上行链路变更。

上行链路变更流程如下:

一、NR基站向UE下发A1/A2事件的测量控制

  1. UE上行链路在NR上行时,gNodeB向UE下发A2测量控制
  2. UE上行链路在NR辅助上行时,gNodeB向UE下发A1测量控制。

二、gNodeB收到UE上报的A1/A2事件后,根据上如下规则,通过RRC重配指示UE进行上行链路变更。

  1. 当UE上行链路在NR上行时,如果NR小区RSRP低于NRCellSul.RsrpThld -Hyst(迟滞)(A2测量事件),则网络侧指示UE变更至NR辅助上行链路。
  2. 当UE上行链路在NR辅助上行时,如果NR小区RSRP高于 NRCellSul.RsrpThld + Hyst(迟滞)(A1测量事件),则网络侧指示UE变更 至NR上行链路。

上下行解耦影响分析

增益分析

  1. NR小区边缘上行吞吐率提升
  2. 上下行解耦特性开通能够有效提升小区边缘吞吐率,小区边缘用户体验得到改善。
  3. 上下行解耦特性开通可以扩大NR小区上行覆盖,接入用户数增加。

影响分析:

上下行解耦用户激活后,网络侧会为用户激活NR上行和NR辅助上行两个载波,因此每个上下行解耦用户会消耗双倍硬件资源。

组网要求:

LTE小区需要和NR小区共站部署。

由于SUL没有对应的下行,因此SUL的功率控制、链路管理等依赖NR小区的下行测量。因此,NR SUL覆 盖与对应的NR小区一致时,能够保证最佳解耦效果。在进行上下行解耦网络部署时,需要保证NR C-Band  天线与NR Sub-3G (SUL)天线的方位角相同。

来源: 5G通信

评论

此博客中的热门博文

VoNR高清语音方案研究及优化指导

一、问题名称及现象概述 VoNR(全称:Voice on New Radio),是一种通话技术,即在通话过程中只通过 5G信号完成语音与视频通话。如同4G时代的 VoLTE,5G SA模式下的VoNR 是基于纯5G接入的通话解决方案, 话音业务和数据业务均由5G网络承载,不依赖4G,是5G成熟发展期的目标语音解决方案。与上一代的VoLTE相比,在通话质量上有大幅度的提升,具有延迟更低、音质与画质更高的特点,可以整体提升用户的使用体验,因此未来智能手机向VoNR转移,只是时间问题。按照目前5G部署的情况来看,在5G建设初期,当手机移动到5G信号覆盖较差的区域时,仍然需要切换到LTE网络,由VoLTE来提供语音服务。 本文重在 VoNR方案介绍和优化指导, 为后续安徽移动 开通 VoNR及优化思路提供参考。 二、解决方案详细说明 1.VoNR组网 过渡方案:不开通VoNR,接入时直接回落到VoLTE 标准R15支持,临时过渡方案,IMS仅先支持SIP即可(简化部署) ,未来支持用户面即可升级到 VoNR. 由于网络不支持 VoNR, 用户发起语音业务时直接回落到 LTE, 数据业务将跟随切换到 LTE, 体验不如选择二 最终方案:开通VoNR,无NR覆盖切换到VoLTE 语音默认采用EVS编码,MOS分更高. 相比选择一,没有Fallback的流程,接入时延更低 数据业务在NR侧,体验更优 2. VoNR信令流程 5G 基于 5QI 建立承载, 类似 4G QCI, 基本流程同 VoLTE ①RRC 连接建立; ②(非必须) 默认承载建立:5QI=8/9; ③IMS 信令面 SIP 默认承载建立:5QI=5; ④IMS 用户面语音专用承载建立:5QI=1; UE通话的同时存在3个Qos Flow:数据业务:5QI8或9,语音业务:5QI1,5QI5,其中,语音的5QI1和5分别勇摄到独立的DRB承载,也即UE通话过程中在空口通常存在3个DRB承载。 ⑤语音通话开始。 VoNR切换VoLTE流程同普通数据业务切换 ①UE 上报测量报告给源 gNB; ②gNB 执行切换判决, 然后向 5GC 发起切换请求; ③目标 eNB 切换准备, 然后发送切换指示; ④终端在目标 eNB 发起随机接入; ⑤UE 切换到目标小区; ⑥通知源 gNB 切换完成, 并释放 UE 上下文。 3

5G NR接口协议

  一、5G 网络总体拓扑 二、5G NR接口介绍 • NG-RAN 与5GC接口:NG • gNB间接口:Xn • gNB-CU与gNB-DU间接口:F1 NG、 Xn、 F1接口信令连接都基于SCTP协议;用户面传输都基于 GTP-U协议。 gNB/ng-eNB与5GC之间接口,各基站通过NG接口与5GC交换数据,传输控制面信令和媒体面数据。NG接口协议包括NG-C和NG-U,分别处理控制面数据和媒体面数据. NG-C功能: • NG接口管理 • UE上下文管理 • UE移动性管理 • NAS消息传输 • 寻呼 • PDU会话管理 • 配置转换 • 告警信息传输 NG-U功能: • 提供NG-RAN 和UPF之间的用户面PDUs非保证传递 gNB/ng-eNB之间接口, 各基站通过Xn接口交换数据, 实现切换等功能。与NG接口类似, Xn接口协议也包括Xn-C和Xn-U, 分别处理控制面数据和媒体面数据. Xn-C接口协议功能包括: • Xn接口管理 • UE移动性管理, 包括上下文转移和RAN寻呼 • 切换 Xn -U接口协议功能包括: • 提供基站间的用户面数据传递 • 数据转发 • 流控制 F1接口是gNB中CU和DU的接口 F1-C接口协议功能包括: • F1接口管理 • gNB-DU管理 • 系统消息管理 • gNB-DU和gNB-CU测量报告 • 负载管理 • 寻呼 • F1 UE 上下文管理 • RRC消息转发 F1-U接口协议功能包括: • 用户数据转发 • 流控制功能 Uu接口为终端与gNB间空中接口, L1 PHY为物理层, 是5G区分于4G和其他代无线通信技术的根本。 L2数据链路层包括MAC(Media Access Control)、 RLC(Radio Link Control)和PDCP(Packet Data Convergence Protocol)。

5G科普—CU和DU分离

  要说5G基站在架构方面的演进,就不得不提CU和DU分离的事情。 CU的全称是Centralized Unit,就是集中单元; DU的全称是Distributed Unit,就是分布单元。 为什么CU和DU要分离? CU和CU分离了到底有什么好处? 现在开始部署的5G基站都是基于CU和DU分离架构的吗? 一、为什么CU和DU要分离? 我们先来看看4G和5G无线接入网部分的架构有什么不同: 由上图可以看出,4G基站内部分为BBU,RRU和天线几个模块,每个基站都有一套BBU,并通过BBU直接连到核心网。 而到了5G时代,原先的RRU和天线合并成了AAU,而BBU则拆分成了DU和CU,每个站都有一套DU,然后多个站点共用同一个CU进行集中式管理。