跳至主要内容

看协议学5G(NR)---随机接入

 本文根据3GPP(R17) TS.38.212 7.3节相关内容翻译整理

5G(NR)网络中的随机接入过程(RACH)终端(UE)基站(eNB/gNodeB)一起取得在无线网与核心网单元之间建立(关联)通道的机制。



初次接入5G终端启动随机接入流程后在物理层(Layer1):

  • 从高层接收一组SS/PBCH块索引,并向高层提供一组对应RSRP测量;

  • 从高层接收以下信息:

  •    物理随机接入信道(PRACH)传输参数和PRACH前导格式、时间资源和用于PRACH传输的频率资源配置;

  •     用于确定PRACH前导序列集合中的根序列及其循环移位的参数(逻辑根序列表的索引、循环移位(CSN)和集合类型(无限制、限制集合A或限制集合 B))


终端物理层随机接入在层一(Layer1)按照以下流程进行:

  • 通过PRACH发送随机接入前导(MSG1);

  • 在PDCCH/PDSCH接收随机接入响应(RAR)消息(MSG2);

  •       也可以,在PUSCH传输的RAR传递UL授权调度信息;

  •       也可以,在PUSCH传递(竞争接入)解决消息;


如随机接入是由PDCCH传递的命令向UE发起,则PRACH命令与高层发起的PRACH信息传递具有相同的子载波间隔(SCS)。

如UE为服务小区配置了两个上行(UL)载波,且UE检测到PDCCH命令则UE使用来自检测到的PDCCH命令的UL/SUL指示符字段值来确定用于相应PRACH传输的UL载波。

随机接入无线网络中终端的接入分为竞争性非竞争性接入,其中:  

竞争随机接入(CBRA)允许终端(UE)与其他UE从共享的池中选择随机接入前导码,因此存在多个UE可能选择相同前导码的风险;当多个终端(UE)选择相同的前导时,将按以下流程处理:

  • 终端(UE)将解码来自RAR(MSG2)的相同内容;

  • 终端将使用相同的一组RB和符号来传输MSG3;

  • 基站(BS)将解码其中一个MSG3并完成竞争解决:

  • 如果MSG3包含CCCH消息:基于MSG4中的MAC CE实现的竞争解决;

  • 如果MSG3包含DCCH消息或DTCH数据:通过其C-RNTI在PDCCH上寻址 终端(UE)实现了竞争解决;

  • 终端(UE)完成随机接入过程,其余UE将通过选择另一个前导码继续该过程。

非竞争随机接入(CFRA)中基站预先分配一个专用的随机接入前导码,从而确保不同的UE使用不同的前导码。通过ra-PreambleIndex使用 RRC信令或层一信令(在PDCCH上的DCI内)提供前导码。



图1.5G网络中竞争和非竞争接入主要流程图

随机接入关键信息5G网络中目前有十二种接入场景,其中大多数属于竞争性接入;切换、失步时下行数据到达、其他系统消息需求和添加辅小区时的时钟对齐可以采用非竞争性接入;随机接入关键信息如下表所示:




图2.5G网络12种接入场景关键信息


评论

此博客中的热门博文

VoNR高清语音方案研究及优化指导

一、问题名称及现象概述 VoNR(全称:Voice on New Radio),是一种通话技术,即在通话过程中只通过 5G信号完成语音与视频通话。如同4G时代的 VoLTE,5G SA模式下的VoNR 是基于纯5G接入的通话解决方案, 话音业务和数据业务均由5G网络承载,不依赖4G,是5G成熟发展期的目标语音解决方案。与上一代的VoLTE相比,在通话质量上有大幅度的提升,具有延迟更低、音质与画质更高的特点,可以整体提升用户的使用体验,因此未来智能手机向VoNR转移,只是时间问题。按照目前5G部署的情况来看,在5G建设初期,当手机移动到5G信号覆盖较差的区域时,仍然需要切换到LTE网络,由VoLTE来提供语音服务。 本文重在 VoNR方案介绍和优化指导, 为后续安徽移动 开通 VoNR及优化思路提供参考。 二、解决方案详细说明 1.VoNR组网 过渡方案:不开通VoNR,接入时直接回落到VoLTE 标准R15支持,临时过渡方案,IMS仅先支持SIP即可(简化部署) ,未来支持用户面即可升级到 VoNR. 由于网络不支持 VoNR, 用户发起语音业务时直接回落到 LTE, 数据业务将跟随切换到 LTE, 体验不如选择二 最终方案:开通VoNR,无NR覆盖切换到VoLTE 语音默认采用EVS编码,MOS分更高. 相比选择一,没有Fallback的流程,接入时延更低 数据业务在NR侧,体验更优 2. VoNR信令流程 5G 基于 5QI 建立承载, 类似 4G QCI, 基本流程同 VoLTE ①RRC 连接建立; ②(非必须) 默认承载建立:5QI=8/9; ③IMS 信令面 SIP 默认承载建立:5QI=5; ④IMS 用户面语音专用承载建立:5QI=1; UE通话的同时存在3个Qos Flow:数据业务:5QI8或9,语音业务:5QI1,5QI5,其中,语音的5QI1和5分别勇摄到独立的DRB承载,也即UE通话过程中在空口通常存在3个DRB承载。 ⑤语音通话开始。 VoNR切换VoLTE流程同普通数据业务切换 ①UE 上报测量报告给源 gNB; ②gNB 执行切换判决, 然后向 5GC 发起切换请求; ③目标 eNB 切换准备, 然后发送切换指示; ④终端在目标 eNB 发起随机接入; ⑤UE 切换到目标小区; ⑥通知源 gNB 切换完成, 并释放 UE 上下文。 3

5G NR接口协议

  一、5G 网络总体拓扑 二、5G NR接口介绍 • NG-RAN 与5GC接口:NG • gNB间接口:Xn • gNB-CU与gNB-DU间接口:F1 NG、 Xn、 F1接口信令连接都基于SCTP协议;用户面传输都基于 GTP-U协议。 gNB/ng-eNB与5GC之间接口,各基站通过NG接口与5GC交换数据,传输控制面信令和媒体面数据。NG接口协议包括NG-C和NG-U,分别处理控制面数据和媒体面数据. NG-C功能: • NG接口管理 • UE上下文管理 • UE移动性管理 • NAS消息传输 • 寻呼 • PDU会话管理 • 配置转换 • 告警信息传输 NG-U功能: • 提供NG-RAN 和UPF之间的用户面PDUs非保证传递 gNB/ng-eNB之间接口, 各基站通过Xn接口交换数据, 实现切换等功能。与NG接口类似, Xn接口协议也包括Xn-C和Xn-U, 分别处理控制面数据和媒体面数据. Xn-C接口协议功能包括: • Xn接口管理 • UE移动性管理, 包括上下文转移和RAN寻呼 • 切换 Xn -U接口协议功能包括: • 提供基站间的用户面数据传递 • 数据转发 • 流控制 F1接口是gNB中CU和DU的接口 F1-C接口协议功能包括: • F1接口管理 • gNB-DU管理 • 系统消息管理 • gNB-DU和gNB-CU测量报告 • 负载管理 • 寻呼 • F1 UE 上下文管理 • RRC消息转发 F1-U接口协议功能包括: • 用户数据转发 • 流控制功能 Uu接口为终端与gNB间空中接口, L1 PHY为物理层, 是5G区分于4G和其他代无线通信技术的根本。 L2数据链路层包括MAC(Media Access Control)、 RLC(Radio Link Control)和PDCP(Packet Data Convergence Protocol)。

5G科普—CU和DU分离

  要说5G基站在架构方面的演进,就不得不提CU和DU分离的事情。 CU的全称是Centralized Unit,就是集中单元; DU的全称是Distributed Unit,就是分布单元。 为什么CU和DU要分离? CU和CU分离了到底有什么好处? 现在开始部署的5G基站都是基于CU和DU分离架构的吗? 一、为什么CU和DU要分离? 我们先来看看4G和5G无线接入网部分的架构有什么不同: 由上图可以看出,4G基站内部分为BBU,RRU和天线几个模块,每个基站都有一套BBU,并通过BBU直接连到核心网。 而到了5G时代,原先的RRU和天线合并成了AAU,而BBU则拆分成了DU和CU,每个站都有一套DU,然后多个站点共用同一个CU进行集中式管理。